Large language models (LLMs) have demonstrated significant poten- tial for many downstream tasks, including those requiring human- level intelligence, such as vulnerability detection. However, recent attempts to use LLMs for vulnerability detection are still prelim- inary, as they lack an in-depth understanding of a subject LLM's vulnerability reasoning capability - whether it originates from the model itself or from external assistance, such as invoking tool sup- port and retrieving vulnerability knowledge. In this paper, we aim to decouple LLMs' vulnerability reason- ing capability from their other capabilities, including the ability to actively seek additional information (e.g., via function calling in SOTA models), adopt relevant vulnerability knowledge (e.g., via vector-based matching and retrieval), and follow instructions to out- put structured results. To this end, we propose a unified evaluation framework named LLM4Vuln, which separates LLMs' vulnerability reasoning from their other capabilities and evaluates how LLMs' vulnerability reasoning could be enhanced when combined with the enhancement of other capabilities. To demonstrate the effectiveness of LLM4Vuln, we have designed controlled experiments using 75 ground-truth smart contract vulnerabilities, which were extensively audited as high-risk on Code4rena from August to November 2023, and tested them in 4,950 different scenarios across three represen- tative LLMs (GPT-4, Mixtral, and Code Llama). Our results not only reveal ten findings regarding the varying effects of knowledge en- hancement, context supplementation, prompt schemes, and models but also enable us to identify 9 zero-day vulnerabilities in two pilot bug bounty programs with over 1,000 USD being awarded.


翻译:暂无翻译

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员