Many real-world strategic games involve interactions between multiple players. We study a hierarchical multi-player game structure, where players with asymmetric roles can be separated into leaders and followers, a setting often referred to as Stackelberg game or leader-follower game. In particular, we focus on a Stackelberg game scenario where there are multiple leaders and a single follower, called the Multi-Leader-Single-Follower (MLSF) game. We propose a novel asymmetric equilibrium concept for the MLSF game called Correlated Stackelberg Equilibrium (CSE). We design online learning algorithms that enable the players to interact in a distributed manner, and prove that it can achieve no-external Stackelberg-regret learning. This further translates to the convergence to approximate CSE via a reduction from no-external regret to no-swap regret. At the core of our works, we solve the intricate problem of how to learn equilibrium in leader-follower games with noisy bandit feedback by balancing exploration and exploitation in different learning structures.


翻译:许多真实世界的战略游戏都涉及多个玩家之间的互动。 我们研究一个等级化的多玩家游戏结构, 使角色不对称的玩家可以分为领导者和追随者, 一种常被称作 Stackelberg 游戏或追随者游戏的游戏。 特别是, 我们侧重于一个有多重领导者和单一追随者参加的Stackelberg 游戏场景, 叫做 MLSF 游戏, 叫做 MLSF 游戏, 我们为 MLSF 游戏提出了一个新的不对称平衡概念, 叫做 Cor 相关Stackelberg Equiblium (CSE) 。 我们设计了在线学习算法, 使玩家能够以分散的方式互动, 并证明它能够实现无外部 Stakkelberg- regret 学习。 这进一步转化了通过将无外悔减为无反感。 在我们工作的核心, 我们通过平衡不同学习结构的探索和开发, 来解决如何在追领者游戏中学习平衡, 使用吵的乐队回馈的问题错综复杂。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
72+阅读 · 2022年7月11日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年12月9日
Arxiv
24+阅读 · 2021年1月25日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
72+阅读 · 2022年7月11日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员