We introduce CatNet, an algorithm that effectively controls False Discovery Rate (FDR) and selects significant features in LSTM with the Gaussian Mirror (GM) method. To evaluate the feature importance of LSTM in time series, we introduce a vector of the derivative of the SHapley Additive exPlanations (SHAP) to measure feature importance. We also propose a new kernel-based dependence measure to avoid multicollinearity in the GM algorithm, to make a robust feature selection with controlled FDR. We use simulated data to evaluate CatNet's performance in both linear models and LSTM models with different link functions. The algorithm effectively controls the FDR while maintaining a high statistical power in all cases. We also evaluate the algorithm's performance in different low-dimensional and high-dimensional cases, demonstrating its robustness in various input dimensions. To evaluate CatNet's performance in real world applications, we construct a multi-factor investment portfolio to forecast the prices of S\&P 500 index components. The results demonstrate that our model achieves superior predictive accuracy compared to traditional LSTM models without feature selection and FDR control. Additionally, CatNet effectively captures common market-driving features, which helps informed decision-making in financial markets by enhancing the interpretability of predictions. Our study integrates of the Gaussian Mirror algorithm with LSTM models for the first time, and introduces SHAP values as a new feature importance metric for FDR control methods, marking a significant advancement in feature selection and error control for neural networks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员