Given graphs $G$ and $H$, we say that $G$ is $H$-$good$ if the Ramsey number $R(G,H)$ equals the trivial lower bound $(|G| - 1)(\chi(H) - 1) + \sigma(H)$, where $\chi(H)$ denotes the usual chromatic number of $H$, and $\sigma(H)$ denotes the minimum size of a color class in a $\chi(H)$-coloring of $H$. Pokrovskiy and Sudakov [Ramsey goodness of paths. Journal of Combinatorial Theory, Series B, 122:384-390, 2017.] proved that $P_n$ is $H$-good whenever $n\geq 4|H|$. In this paper, given $\varepsilon>0$, we show that if $H$ satisfy a special unbalance condition, then $P_n$ is $H$-good whenever $n \geq (2 + \varepsilon)|H|$. More specifically, we show that if $m_1,\ldots, m_k$ are such that $\varepsilon\cdot m_i \geq 2m_{i-1}^2$ for $2\leq i\leq k$, and $n \geq (2 + \varepsilon)(m_1 + \cdots + m_k)$, then $P_n$ is $K_{m_1,\ldots,m_k}$-good.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年12月5日
Arxiv
0+阅读 · 2024年12月4日
Arxiv
0+阅读 · 2024年12月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员