We present algorithms for the online minimum hitting set problem in geometric range spaces: given a set $P$ of $n$ points in the plane and a sequence of geometric objects that arrive one-by-one, we need to maintain a hitting set at all times by making irrevocable decisions. For disks of radii in the interval $[1,M]$, we present an $O(\log M \log n)$-competitive algorithm. This result generalizes from disks to positive homothets of any convex body in the plane with scaling factors in the interval $[1,M]$. As a main technical tool, we reduce the problem to the online hitting set problem for a finite subset of integer points and geometric objects with the lowest point property, introduced in this paper, which behave similarly to bottomless rectangles. Specifically, for a given $N>1$, we present an $O(\log N)$-competitive algorithm for the variant where $P$ is a subset of an $N\times N$ section of the integer lattice, and the geometric objects have the lowest point property.
翻译:本文针对几何范围空间中的在线最小击中集问题提出算法:给定平面上包含 $n$ 个点的集合 $P$ 以及按序到达的几何对象序列,我们需要通过不可撤销的决策实时维护一个击中集。对于半径在区间 $[1,M]$ 内的圆盘,我们提出了一个 $O(\log M \log n)$ 竞争比的算法。该结果可从圆盘推广至平面上任意凸体在缩放因子区间 $[1,M]$ 内的正位似变换。作为核心技术工具,我们将问题规约至具有最低点性质的整数点有限子集与几何对象的在线击中集问题——该性质在本文中首次提出,其行为特征类似于无底矩形。具体而言,对于给定 $N>1$,当 $P$ 为整数格点 $N\times N$ 区域的子集且几何对象满足最低点性质时,我们给出了 $O(\log N)$ 竞争比的算法变体。