Estimating the conditional mean function is a central task in statistical learning. In this paper, we consider estimation and inference for a nonparametric class of real-valued cadlag functions with bounded sectional variation (Gill et al., 1995), using the Highly Adaptive Lasso (HAL) (van der Laan, 2015; Benkeser and van der Laan, 2016; van der Laan, 2023), a flexible empirical risk minimizer over linear combinations of tensor products of zero- or higher-order spline basis functions under an L1 norm constraint. Building on recent theoretical advances in asymptotic normality and uniform convergence rates for higher-order spline HAL estimators, this work focuses on constructing robust confidence intervals for HAL-based estimators of conditional means. First, we propose a targeted HAL with a debiasing step to remove the regularization bias of the targeted conditional mean and also consider a relaxed HAL estimator to reduce such bias within the working model. Second, we propose both global and local undersmoothing strategies to adaptively enlarge the working model and further reduce bias relative to variance. Third, we combine these estimation strategies with delta-method-based variance estimators to construct confidence intervals for the conditional mean. Through extensive simulation studies, we evaluate different combinations of our estimation procedures, model selection strategies, and confidence-interval constructions. The results show that our proposed approaches substantially reduce bias relative to variance and yield confidence intervals with coverage rates close to nominal levels across different scenarios. Finally, we demonstrate the general applicability of our framework by estimating conditional average treatment effect (CATE) functions, highlighting how HAL-based inference methods extend to other infinite-dimensional, non-pathwise-differentiable parameters.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员