Let $V$ be a vector space over the finite field $\mathbb{F}_q$ with $q$ elements and $Λ$ be the image of the Segre geometry $\mathrm{PG}(V)\otimes\mathrm{PG}(V^*)$ in $\mathrm{PG}(V\otimes V^*)$. Consider the subvariety $Λ_{1}$ of $Λ$ represented by the pure tensors $x\otimes ξ$ with $x\in V$ and $ξ\in V^*$ such that $ξ(x)=0$. Regarding $Λ_1$ as a projective system of $\mathrm{PG}(V\otimes V^*)$, we study the linear code $\mathcal{C}(Λ_1)$ arising from it. The code $\mathcal{C}(Λ_1)$ is minimal code and we determine its basic parameters, itsfull weight list and its linear automorphism group. We also give a geometrical characterization of its minimum and second lowest weight codewords as well as of some of the words of maximum weight.
翻译:设 $V$ 为有限域 $\mathbb{F}_q$ 上的向量空间,其中 $q$ 为域的元素个数,且令 $Λ$ 为 Segre 几何 $\mathrm{PG}(V)\otimes\mathrm{PG}(V^*)$ 在 $\mathrm{PG}(V\otimes V^*)$ 中的像。考虑 $Λ$ 的子簇 $Λ_{1}$,其由满足 $ξ(x)=0$ 的纯张量 $x\otimes ξ$ 表示,其中 $x\in V$ 且 $ξ\in V^*$。将 $Λ_1$ 视为 $\mathrm{PG}(V\otimes V^*)$ 的射影系统,我们研究由此产生的线性码 $\mathcal{C}(Λ_1)$。该码 $\mathcal{C}(Λ_1)$ 为极小码,我们确定了其基本参数、完整权重列表及其线性自同构群。此外,我们还从几何角度刻画了其最小权重与次小权重码字,以及部分最大权重码字的特征。