This paper develops a practical numerical method for locating the zeros and poles of a meromorphic function, based upon the generalized argument principle. Sensitivity is analysed carefully to assure the algorithm stability. A novel approach to the error estimation is also proposed. Numerical examples are given to illustrate the effectiveness and practicability, with emphasis on the potential applications in plasma physics.


翻译:本文根据普遍论证原则,为确定中形函数的零和极定位开发了实用的数字方法,对敏感性进行了认真分析,以确保算法稳定性,还提出了新的误差估计方法,用数字实例说明有效性和实用性,重点是等离子物理的潜在应用。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
109+阅读 · 2020年8月4日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员