Although many methods have been proposed to estimate attributions of input variables, there still exists a significant theoretical flaw in masking-based attribution methods, i.e., it is hard to examine whether the masking method faithfully represents the absence of input variables. Specifically, for masking-based attributions, setting an input variable to the baseline value is a typical way of representing the absence of the variable. However, there are no studies investigating how to represent the absence of input variables and verify the faithfulness of baseline values. Therefore, we revisit the feature representation of a DNN in terms of causality, and propose to use causal patterns to examine whether the masking method faithfully removes information encoded in input variables. More crucially, it is proven that the causality can be explained as the elementary rationale of the Shapley value. Furthermore, we define the optimal baseline value from the perspective of causality, and we propose a method to learn the optimal baseline value. Experimental results have demonstrated the effectiveness of our method.


翻译:尽管提出了许多方法来估计投入变量的属性,但在掩盖属性方法方面仍然存在一个重大的理论缺陷,即很难审查掩盖方法是否忠实地代表没有投入变量。具体地说,对于掩盖属性而言,为基准值设定一个输入变量是代表不存在变量的典型方法。然而,没有研究如何代表缺少输入变量并核实基准值的准确性。因此,我们重新审视了以因果性表示的DNN特征,并提议使用因果模式来审查掩盖方法是否忠实地删除输入变量编码的信息。更重要的是,可以证明因果关系可以被解释为“沙普利值”的基本理由。此外,我们从因果关系的角度界定了最佳基线值,我们提出了一种方法来学习最佳基线值。实验结果证明了我们的方法的有效性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员