With the rapid development of the short video industry, traditional e-commerce has encountered a new paradigm, video-driven e-commerce, which leverages attractive videos for product showcases and provides both video and item services for users. Benefitting from the dynamic and visualized introduction of items,video-driven e-commerce has shown huge potential in stimulating consumer confidence and promoting sales. In this paper, we focus on the video retrieval task, facing the following challenges: (1) Howto handle the heterogeneities among users, items, and videos? (2)How to mine the complementarity between items and videos for better user understanding? In this paper, we first leverage the dual graph to model the co-existing of user-video and user-item interactions in video-driven e-commerce and innovatively reduce user preference understanding to a graph matching problem. To solve it, we further propose a novel bi-level Graph Matching Network(GMN), which mainly consists of node- and preference-level graph matching. Given a user, node-level graph matching aims to match videos and items, while preference-level graph matching aims to match multiple user preferences extracted from both videos and items. Then the proposed GMN can generate and improve user embedding by aggregating matched nodes or preferences from the dual graph in a bi-level manner. Comprehensive experiments show the superiority of the proposed GMN with significant improvements over state-of-the-art approaches (e.g., AUC+1.9% and CTR+7.15%). We have developed it on a well-known video-driven e-commerce platform, serving hundreds of millions of users every day


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VLP: A Survey on Vision-Language Pre-training
Arxiv
11+阅读 · 2022年2月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员