We study vectorial functions with maximal number of bent components in this paper. We first study the Walsh transform and nonlinearity of $F(x)=x^{2^e}h(\Tr_{2^{2m}/2^m}(x))$, where $e\geq0$ and $h(x)$ is a permutation over $\F_{2^m}$. If $h(x)$ is monomial, the nonlinearity of $F(x)$ is shown to be at most $ 2^{2m-1}-2^{\lfloor\frac{3m}{2}\rfloor}$ and some non-plateaued and plateaued functions attaining the upper bound are found. This gives a partial answer to the open problems proposed by Pott et al. and Anbar et al. If $h(x)$ is linear, the exact nonlinearity of $F(x)$ is determined. Secondly, we give a construction of vectorial functions with maximal number of bent components from known ones, thus obtain two new classes from the Niho class and the Maiorana-McFarland class. Our construction gives a partial answer to an open problem proposed by Pott et al., and also contains vectorial functions outside the complete Maiorana-McFarland class. Finally, we show that the vectorial function $F: \F_{2^{2m}}\rightarrow \F_{2^{2m}}$, $x\mapsto x^{2^m+1}+x^{2^i+1}$ has maximal number of bent components if and only if $i=0$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员