This paper investigates a key challenge faced by joint source-channel coding (JSCC) in digital semantic communication (SemCom): the incompatibility between existing JSCC schemes that yield continuous encoded representations and digital systems that employ discrete variable-length codewords. It further results in feasibility issues in achieving physical bit-level rate control via such JSCC approaches for efficient semantic transmission. In this paper, we propose a novel end-to-end coding (E2EC) framework to tackle it. The semantic coding problem is formed by extending the information bottleneck (IB) theory over noisy channels, which is a tradeoff between bit-level communication rate and semantic distortion. With a structural decomposition of encoding to handle code length and content respectively, we can construct an end-to-end trainable encoder that supports the direct compression of a data source into a finite codebook. To optimize our E2EC across non-differentiable operations, e.g., sampling, we use the powerful policy gradient to support gradient-based updates. Experimental results illustrate that E2EC achieves high inference quality with low bit rates, outperforming representative baselines compatible with digital SemCom systems.


翻译:本文研究了数字语义通信中联合信源信道编码面临的一个关键挑战:现有JSCC方案产生连续编码表示,与采用离散变长码字的数字系统不兼容。这进一步导致通过此类JSCC方法实现物理比特级速率控制以进行高效语义传输存在可行性问题。本文提出一种新颖的端到端编码框架来解决该问题。通过将信息瓶颈理论扩展至噪声信道,构建了语义编码问题,该问题本质上是比特级通信速率与语义失真之间的权衡。通过对编码结构进行分解以分别处理码长和内容,我们构建了一个端到端可训练的编码器,支持将数据源直接压缩至有限码本。为优化E2EC中不可微操作(如采样),我们采用策略梯度方法支持基于梯度的更新。实验结果表明,E2EC在低比特率下实现了高推理质量,优于与数字语义通信系统兼容的代表性基线方法。

0
下载
关闭预览

相关内容

用于识别任务的视觉 Transformer 综述
专知会员服务
75+阅读 · 2023年2月25日
【Reza Yazdanfar】基于递归神经网络的多元缺失值时间序列
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
38+阅读 · 2021年4月16日
【AAAI2021】用于视频描述的语义分组网络
专知会员服务
16+阅读 · 2021年2月3日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关VIP内容
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员