Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. \fix In this paper, we propose \textit{TrajAgent}, a agent framework powered by large language models (LLMs), designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. \unfix~In \textit{TrajAgent}, we first develop \textit{UniEnv}, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on \textit{UniEnv}, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on four tasks using four real-world datasets demonstrate the effectiveness of \textit{TrajAgent} in automated trajectory modeling, achieving a performance improvement of \fix 2.38\%-69.91\% \unfix over baseline methods. The codes and data can be accessed via https://github.com/tsinghua-fib-lab/TrajAgent.


翻译:轨迹建模(涵盖轨迹数据模式挖掘与未来预测研究)在生活服务、城市交通及公共管理等领域具有广泛应用。针对轨迹建模中的特定问题,已有大量方法被提出。然而,数据的异构性与轨迹任务的多样性使得高效可靠的轨迹建模成为一项重要且极具挑战性的工作,即使对领域专家而言亦是如此。本文提出TrajAgent,一种基于大语言模型(LLMs)驱动的智能体框架,旨在通过自动化建模实现稳健高效的轨迹建模。该框架充分利用并优化多种专用模型,以有效应对不同数据集上的各类轨迹建模任务。在TrajAgent中,我们首先构建了UniEnv——一个具备统一数据与模型接口的执行环境,以支持多种模型的执行与训练。基于UniEnv,我们设计了一种面向跨任务、跨数据自动轨迹建模的智能体工作流。此外,我们引入了基于大语言模型的智能体与小型专用模型间的协同学习机制,以有效提升整体框架性能。在四个真实数据集上对四项任务进行的大量实验表明,TrajAgent在自动化轨迹建模中具有显著有效性,其性能较基线方法提升了2.38%–69.91%。相关代码与数据可通过https://github.com/tsinghua-fib-lab/TrajAgent获取。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年10月27日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员