This paper presents a web-based demonstration of Emotion Twenty Questions (EMO20Q), a dialog game whose purpose is to study how people describe emotions. EMO20Q can also be used to develop artificially intelligent dialog agents that can play the game. In previous work, an EMO20Q agent used a sequential Bayesian machine learning model and could play the question-asking role. Newer transformer-based neural machine learning models have made it possible to develop an agent for the question-answering role. This demo paper describes the recent developments in the question-answering role of the EMO20Q game, which requires the agent to respond to more open-ended inputs. Furthermore, we also describe the design of the system, including the web-based front-end, agent architecture and programming, and updates to earlier software used. The demo system will be available to collect pilot data during the ACII conference and this data will be used to inform future experiments and system design.
翻译:本文展示了一个基于网络的情感二十问题演示(EMO20Q),这是一个对话游戏,目的是研究人们如何描述情感。EMO20Q也可以用来开发能玩游戏的人工智能对话器。在以往的工作中,EMO20Q代理使用一个相继的Bayesian机器学习模型,可以发挥提问作用。基于新变压器的神经机学习模型使得有可能为问答作用开发一个代理。本演示文件描述了EMO20Q游戏的问答作用的最新发展情况,这需要该代理对更开放的投入作出反应。此外,我们还描述了该系统的设计,包括基于网络的前端、代理结构和编程,以及对先前使用的软件的更新。演示系统将可用于在ACII会议期间收集试点数据,这些数据将被用于为未来的实验和系统设计提供信息。