The Internet of Vehicles (IoV) is emerging as a pivotal technology for enhancing traffic management and safety. Its rapid development demands solutions for enhanced communication efficiency and reduced latency. However, traditional centralized networks struggle to meet these demands, prompting the exploration of decentralized solutions such as blockchain. Addressing blockchain's scalability challenges posed by the growing number of nodes and transactions calls for innovative solutions, among which sharding stands out as a pivotal approach to significantly enhance blockchain throughput. However, existing schemes still face challenges related to a) the impact of vehicle mobility on blockchain consensus, especially for cross-shard transaction; and b) the strict requirements of low latency consensus in a highly dynamic network. In this paper, we propose a DAG (Directed Acyclic Graph) consensus leveraging Robust Dynamic Sharding and Tree-broadcasting (DRDST) to address these challenges. Specifically, we first develop a standard for evaluating the network stability of nodes, combined with the nodes' trust values, to propose a novel robust sharding model that is solved through the design of the Genetic Sharding Algorithm (GSA). Then, we optimize the broadcast latency of the whole sharded network by improving the tree-broadcasting to minimize the maximum broadcast latency within each shard. On this basis, we also design a DAG consensus scheme based on an improved hashgraph protocol, which can efficiently handle cross-shard transactions. Finally, the simulation proves the proposed scheme is superior to the comparison schemes in latency, throughput, consensus success rate, and node traffic load.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员