Functional data analysis (FDA) almost always involves smoothing discrete observations into curves, because they are never observed in continuous time and rarely without error. Although smoothing parameters affect the subsequent inference, data-driven methods for selecting these parameters are not well-developed, frustrated by the difficulty of using all the information shared by curves while being computationally efficient. On the one hand, smoothing individual curves in an isolated, albeit sophisticated way, ignores useful signals present in other curves. On the other hand, bandwidth selection by automatic procedures such as cross-validation after pooling all the curves together quickly become computationally unfeasible due to the large number of data points. In this paper we propose a new data-driven, adaptive kernel smoothing, specifically tailored for functional principal components analysis (FPCA) through the derivation of sharp, explicit risk bounds for the eigen-elements. The minimization of these quadratic risk bounds provide refined, yet computationally efficient bandwidth rules for each eigen-element separately. Both common and independent design cases are allowed. Rates of convergence for the adaptive eigen-elements estimators are derived. An extensive simulation study, designed in a versatile manner to closely mimic characteristics of real data sets, support our methodological contribution, which is available for use in the R package FDAdapt.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员