Block-structured integer linear programs (ILPs) play an important role in various application fields. We address $n$-fold ILPs where the matrix $\mathcal{A}$ has a specific structure, i.e., where the blocks in the lower part of $\mathcal{A}$ consist only of the row vectors $(1,\dots,1)$. In this paper, we propose an approach tailored to exactly these combinatorial $n$-folds. We utilize a divide and conquer approach to separate the original problem such that the right-hand side iteratively decreases in size. We show that this decrease in size can be calculated such that we only need to consider a bounded amount of possible right-hand sides. This, in turn, lets us efficiently combine solutions of the smaller right-hand sides to solve the original problem. We can decide the feasibility of, and also optimally solve, such problems in time $(n r \Delta)^{O(r)} \log(\|b\|_\infty),$ where $n$ is the number of blocks, $r$ the number of rows in the upper blocks and $\Delta=\|A\|_\infty$. We complement the algorithm by discussing applications of the $n$-fold ILPs with the specific structure we require. We consider the problems of (i) scheduling on uniform machines, (ii) closest string and (iii) (graph) imbalance. Regarding (i), our algorithm results in running times of $p_{\max}^{O(d)}|I|^{O(1)},$ matching a lower bound derived via ETH. For (ii) we achieve running times matching the current state-of-the-art in the general case. In contrast to the state-of-the-art, our result can leverage a bounded number of column-types to yield an improved running time. For (iii), we improve the parameter dependency on the size of the vertex cover.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2019年3月16日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员