Supercapacitors are promising electrochemical energy storage devices due to their prominent performance in rapid charging/discharging rates, long cycle life, stability, etc. Experimental measurement and theoretical prediction on charging timescale for supercapacitors often have large difference. This work develops a matched asymptotic expansion method to derive the charging dynamics of supercapacitors with porous electrodes, in which the supercapacitors are described by the stack-electrode model. Coupling leading-order solutions between every two stacks by continuity of ionic concentration and fluxes leads to an ODE system, which is a generalized equivalent circuit model for zeta potentials, with the potential-dependent nonlinear capacitance and resistance determined by physical parameters of electrolytes, e.g., specific counterion valences for asymmetric electrolytes. Linearized stability analysis on the ODE system after projection is developed to theoretically characterize the charging timescale. The derived asymptotic solutions are numerically verified. Further numerical investigations on the biexponential charging timescales demonstrate that the proposed generalized equivalent circuit model, as well as companion linearized stability analysis, can faithfully capture the charging dynamics of symmetric/asymmetric electrolytes in supercapacitors with porous electrodes.


翻译:超级电容器是一种有前途的电化学储能装置,由于其在快速充放电速率、长寿命、稳定性等方面的出色性能而备受关注。实验测量和对超级电容器充电时间尺度的理论预测通常存在较大差异。本文开发了一种匹配渐进展开方法,以导出具有多孔电极的超级电容器的充电动力学,其中使用了叠层电极模型描述超级电容器。通过保证每两个堆栈之间的离子浓度和通量的连续性来耦合每个阶段的领先解,得到了一个常微分方程系统,它是一个关于ζ电位的广义等效电路模型,其中,电势依赖的非线性电容和电阻由电解质的物理参数确定,例如非对称电解质的特定反离子价。在投影后对ODE系统进行线性稳定性分析,以在理论上表征充电时间尺度。导出的渐近解得到了数值验证。对双指数充电时间尺度进行的进一步数值研究表明,所提出的广义等效电路模型以及伴随的线性稳定性分析,能够忠实地捕捉具有多孔电极的超级电容器中对称/非对称电解质的充电动力学。

0
下载
关闭预览

相关内容

电动力学(Electrodynamics),电磁现象的经典的动力学理论。通常也称为经典电动力学,电动力学是它的简称。它研究电磁场的基本属性、运动规律以及电磁场和带电物质的相互作用。
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
【2022新书】Python数据分析第三版,579页pdf
专知会员服务
228+阅读 · 2022年8月31日
专知会员服务
25+阅读 · 2021年4月2日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月5日
VIP会员
相关VIP内容
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员