Data sharing is ubiquitous in the metaverse, which adopts blockchain as its foundation. Blockchain is employed because it enables data transparency, achieves tamper resistance, and supports smart contracts. However, securely sharing data based on blockchain necessitates further consideration. Ciphertext-policy attribute-based encryption (CP-ABE) is a promising primitive to provide confidentiality and fine-grained access control. Nonetheless, authority accountability and key abuse are critical issues that practical applications must address. Few studies have considered CP-ABE key confidentiality and authority accountability simultaneously. To our knowledge, we are the first to fill this gap by integrating non-interactive zero-knowledge (NIZK) proofs into CP-ABE keys and outsourcing the verification process to a smart contract. To meet the decentralization requirement, we incorporate a decentralized CP-ABE scheme into the proposed data sharing system. Additionally, we provide an implementation based on smart contract to determine whether an access control policy is satisfied by a set of CP-ABE keys. We also introduce an open incentive mechanism to encourage honest participation in data sharing. Hence, the key abuse issue is resolved through the NIZK proof and the incentive mechanism. We provide a theoretical analysis and conduct comprehensive experiments to demonstrate the feasibility and efficiency of the data sharing system. Based on the proposed accountable approach, we further illustrate an application in GameFi, where players can play to earn or contribute to an accountable DAO, fostering a thriving metaverse ecosystem.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员