A variety of infinitely wide neural architectures (e.g., dense NNs, CNNs, and transformers) induce Gaussian process (GP) priors over their outputs. These relationships provide both an accurate characterization of the prior predictive distribution and enable the use of GP machinery to improve the uncertainty quantification of deep neural networks. In this work, we extend this connection to neural operators (NOs), a class of models designed to learn mappings between function spaces. Specifically, we show conditions for when arbitrary-depth NOs with Gaussian-distributed convolution kernels converge to function-valued GPs. Based on this result, we show how to compute the covariance functions of these NO-GPs for two NO parametrizations, including the popular Fourier neural operator (FNO). With this, we compute the posteriors of these GPs in regression scenarios, including PDE solution operators. This work is an important step towards uncovering the inductive biases of current FNO architectures and opens a path to incorporate novel inductive biases for use in kernel-based operator learning methods.


翻译:多种无限宽神经架构(如密集神经网络、卷积神经网络和Transformer)在其输出上诱导出高斯过程先验。这些关联不仅提供了先验预测分布的精确刻画,还使得能够利用高斯过程工具来改进深度神经网络的不确定性量化。本研究将这一关联拓展至神经算子——一类专门设计用于学习函数空间之间映射的模型。具体而言,我们证明了具有高斯分布卷积核的任意深度神经算子在何种条件下会收敛到函数值高斯过程。基于该结果,我们展示了如何针对两种神经算子参数化配置(包括流行的傅里叶神经算子)计算这些神经算子-高斯过程的协方差函数。借此,我们在回归场景(包括偏微分方程解算子)中计算了这些高斯过程的后验分布。本工作为揭示当前傅里叶神经算子架构的归纳偏置迈出了重要一步,并为在基于核的算子学习方法中引入新型归纳偏置开辟了路径。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员