A variety of infinitely wide neural architectures (e.g., dense NNs, CNNs, and transformers) induce Gaussian process (GP) priors over their outputs. These relationships provide both an accurate characterization of the prior predictive distribution and enable the use of GP machinery to improve the uncertainty quantification of deep neural networks. In this work, we extend this connection to neural operators (NOs), a class of models designed to learn mappings between function spaces. Specifically, we show conditions for when arbitrary-depth NOs with Gaussian-distributed convolution kernels converge to function-valued GPs. Based on this result, we show how to compute the covariance functions of these NO-GPs for two NO parametrizations, including the popular Fourier neural operator (FNO). With this, we compute the posteriors of these GPs in regression scenarios, including PDE solution operators. This work is an important step towards uncovering the inductive biases of current FNO architectures and opens a path to incorporate novel inductive biases for use in kernel-based operator learning methods.
翻译:多种无限宽神经架构(如密集神经网络、卷积神经网络和Transformer)在其输出上诱导出高斯过程先验。这些关联不仅提供了先验预测分布的精确刻画,还使得能够利用高斯过程工具来改进深度神经网络的不确定性量化。本研究将这一关联拓展至神经算子——一类专门设计用于学习函数空间之间映射的模型。具体而言,我们证明了具有高斯分布卷积核的任意深度神经算子在何种条件下会收敛到函数值高斯过程。基于该结果,我们展示了如何针对两种神经算子参数化配置(包括流行的傅里叶神经算子)计算这些神经算子-高斯过程的协方差函数。借此,我们在回归场景(包括偏微分方程解算子)中计算了这些高斯过程的后验分布。本工作为揭示当前傅里叶神经算子架构的归纳偏置迈出了重要一步,并为在基于核的算子学习方法中引入新型归纳偏置开辟了路径。