We analyze deterministic message identification via channels with non-discrete additive white noise and with a noiseless feedback link under both average power and peak power constraints. The identification task is part of Post Shannon Theory. The consideration of communication systems beyond Shannon's approach is useful in order to increase the efficiency of information transmission for certain applications. We propose a coding scheme that first generates infinite common randomness between the sender and the receiver. If the channel has a positive message transmission feedback capacity, for given error thresholds and sufficiently large blocklength this common randomness is then used to construct arbitrarily large deterministic identification codes. In particular, the deterministic identification feedback capacity is infinite regardless of the scaling (exponential, doubly exponential, etc.) chosen for the capacity definition. Clearly, if randomized encoding is allowed in addition to the use of feedback, these results continue to hold.


翻译:我们用非分辨添加白噪音的渠道分析确定信息的身份,并在平均功率和峰值功率限制下使用无噪音的反馈链接。识别任务属于香农后理论的一部分。考虑香农方法之外的通信系统对于提高某些应用程序的信息传输效率是有用的。我们建议了一个编码办法,首先在发送者和接收者之间产生无限的共同随机性。如果频道具有正面的信息传输反馈能力,根据给定的差错阈值和足够长的整块宽度,这种共同随机性被用来建立任意的大型确定性识别代码。特别是,确定性识别反馈能力是无限的,不管为能力定义所选择的尺度大小(耗尽、双倍指数等)如何。很显然,如果允许随机编码,除了使用反馈之外,还允许使用随机编码,这些结果将继续维持下去。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员