In epidemiological research, causal models incorporating potential mediators along a pathway are crucial for understanding how exposures influence health outcomes. This work is motivated by integrated epidemiological and blood biomarker studies, investigating the relationship between long-term adherence to a Mediterranean diet and cardiometabolic health, with plasma metabolomes as potential mediators. Analyzing causal mediation in such high-dimensional omics data presents substantial challenges, including complex dependencies among mediators and the need for advanced regularization or Bayesian techniques to ensure stable and interpretable estimation and selection of indirect effects. To this end, we propose a novel Bayesian framework for identifying active pathways and estimating indirect effects in the presence of high-dimensional multivariate mediators. Our approach adopts a multivariate stochastic search variable selection method, tailored for such complex mediation scenarios. Central to our method is the introduction of a set of priors for the selection: a Markov random field prior and sequential subsetting Bernoulli priors. The first prior's Markov property leverages the inherent correlations among mediators, thereby increasing power to detect mediated effects. The sequential subsetting aspect of the second prior encourages the simultaneous selection of relevant mediators and their corresponding indirect effects from the two model parts, providing a more coherent and efficient variable selection framework, specific to mediation analysis. Comprehensive simulation studies demonstrate that the proposed method provides superior power in detecting active mediating pathways. We further illustrate the practical utility of the method through its application to metabolome data from two cohort studies, highlighting its effectiveness in real data setting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员