Border complexity measures are defined via limits (or topological closures), so that any function which can approximated arbitrarily closely by low complexity functions itself has low border complexity. Debordering is the task of proving an upper bound on some non-border complexity measure in terms of a border complexity measure, thus getting rid of limits. Debordering is at the heart of understanding the difference between Valiant's determinant vs permanent conjecture, and Mulmuley and Sohoni's variation which uses border determinantal complexity. The debordering of matrix multiplication tensors by Bini played a pivotal role in the development of efficient matrix multiplication algorithms. Consequently, debordering finds applications in both establishing computational complexity lower bounds and facilitating algorithm design. Currently, very few debordering results are known. In this work, we study the question of debordering the border Waring rank of polynomials. Waring and border Waring rank are very well studied measures in the context of invariant theory, algebraic geometry, and matrix multiplication algorithms. For the first time, we obtain a Waring rank upper bound that is exponential in the border Waring rank and only linear in the degree. All previous known results were exponential in the degree. For polynomials with constant border Waring rank, our results imply an upper bound on the Waring rank linear in degree, which previously was only known for polynomials with border Waring rank at most 5.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月26日
Arxiv
0+阅读 · 2024年2月24日
Arxiv
0+阅读 · 2024年2月23日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关论文
Arxiv
0+阅读 · 2024年2月26日
Arxiv
0+阅读 · 2024年2月24日
Arxiv
0+阅读 · 2024年2月23日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员