We present an efficient exact quantum algorithm for order finding problem when a multiple $m$ of the order $r$ is known. The algorithm consists of two main ingredients. The first ingredient is the exact quantum Fourier transform proposed by Mosca and Zalka in [MZ03]. The second ingredient is an amplitude amplification version of Brassard and Hoyer in [BH97] combined with some ideas from the exact discrete logarithm procedure by Mosca and Zalka in [MZ03]. As applications, we show how the algorithm derandomizes the quantum algorithm for primality testing proposed by Donis-Vela and Garcia-Escartin in [DVGE18], and serves as a subroutine of an efficient exact quantum algorithm for finding primitive elements in arbitrary finite fields. .
翻译:我们提出了一个高效的精确量子算法,用于在知道订单的多百万美元美元的情况下查找问题。算法由两个主要成分组成。第一个成分是Mosca和Zalka在[MZ03]中提议的精确量子Fourier变异。第二个成分是[BH97]中的Brassard和Hoyer的振幅振动版,加上Mosca和Zalka在[MZ03]中的精确离散对数程序的一些想法。作为应用,我们展示了该算法如何将Donis-Vela和Garcia-Escartin在[DVGE18]中提议的原始测试的量子算法去掉,并用作在任意的有限字段中找到原始元素的有效精确量算法的子。