Multimodal large language models (MLLMs) have shown strong capabilities across a broad range of benchmarks. However, most existing evaluations focus on passive inference, where models perform step-by-step reasoning under complete information. This setup is misaligned with real-world use, where seeing is not enough. This raises a fundamental question: Can MLLMs actively acquire missing evidence under incomplete information? To bridge this gap, we require the MLLMs to actively acquire missing evidence and iteratively refine decisions under incomplete information, by selecting a target image from a candidate pool without task-specific priors. To support systematic study, we propose GuessBench, a benchmark with both perception-oriented and knowledge-oriented images for evaluating active reasoning in MLLMs. We evaluate 20 superior MLLMs and find that performance on active reasoning lags far behind it on passive settings, indicating substantial room for improvement. Further analysis identifies fine-grained perception and timely decision-making as key challenges. Ablation studies show that perceptual enhancements benefit smaller models, whereas thinking-oriented methods provide consistent gains across model sizes. These results suggest promising directions for future research on multimodal active reasoning.


翻译:多模态大语言模型(MLLMs)已在广泛的基准测试中展现出强大的能力。然而,现有评估大多聚焦于被动推理,即模型在完整信息下执行逐步推理。这种设置与现实应用场景不符,因为在真实世界中“所见”往往不足。这引发了一个根本性问题:MLLMs能否在不完整信息下主动获取缺失证据?为弥合这一差距,我们要求MLLMs在不依赖任务先验知识的情况下,从候选图像池中选择目标图像,以主动获取缺失证据并在不完整信息中迭代优化决策。为支持系统性研究,我们提出了GuessBench——一个包含感知导向与知识导向图像的双维度基准,用于评估MLLMs的主动推理能力。我们对20个先进MLLMs进行评估,发现其在主动推理任务上的表现远落后于被动推理场景,表明存在巨大的改进空间。进一步分析指出,细粒度感知与适时决策是当前面临的关键挑战。消融实验表明,感知增强对小规模模型更有助益,而思维导向的方法能在不同规模模型中带来持续增益。这些结果为多模态主动推理的未来研究指明了有潜力的方向。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2023年9月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员