Conflicts, like many social processes, are related events that span multiple scales in time, from the instantaneous to multi-year developments, and in space, from one neighborhood to continents. Yet, there is little systematic work on connecting the multiple scales, formal treatment of causality between events, and measures of uncertainty for how events are related to one another. We develop a method for extracting related chains of events that addresses these limitations with armed conflict. Our method explicitly accounts for an adjustable spatial and temporal scale of interaction for clustering individual events from a detailed data set, the Armed Conflict Event & Location Data Project. With it, we discover a mesoscale ranging from a week to a few months and from tens to a few hundred kilometers, where long-range correlations and nontrivial dynamics relating conflict events emerge. Importantly, clusters in the mesoscale, while extracted only from conflict statistics, are identifiable with causal mechanism cited in field studies. We leverage our technique to identify zones of causal interaction around conflict hotspots that naturally incorporate uncertainties. Thus, we show how a systematic, data-driven procedure extracts social objects for study, providing a scope for scrutinizing and predicting conflict amongst other processes.
翻译:与许多社会进程一样,冲突是从瞬间到多年发展、从一个邻里到一个大陆的跨时间跨多个尺度的事件,从瞬间到多年的发展,从空间到一个大陆。然而,在将多种尺度、事件之间因果关系的正式处理以及事件相互关系的不确定性衡量方法联系起来方面,却很少进行系统的工作。我们开发了一种方法,从各种事件中抽出一个相关的事件链条,解决武装冲突带来的这些限制。我们的方法明确说明了从一个详细的数据集,武装冲突事件和位置数据项目,将个别事件集中起来的可调整的空间和时间互动规模。我们通过这种方法发现了一个从一周到几个月、从几百公里到几百公里不等的中间尺度,在其中出现了与冲突事件有关的长距离关联和非三角动态。重要的是,中间尺度中的集群,虽然只是从冲突统计数据中提取,但与实地研究所引用的因果关系机制是可识别的。我们利用技术来查明冲突热点周围自然包含不确定性的因果关系的区域。因此,我们展示了系统、数据驱动的程序如何提取社会对象供研究,为其他进程之间的冲突提供仔细分析和预测的范围。