The influence of natural image transformations on receptive field responses is crucial for modelling visual operations in computer vision and biological vision. In this regard, covariance properties with respect to geometric image transformations in the earliest layers of the visual hierarchy are essential for expressing robust image operations, and for formulating invariant visual operations at higher levels. This paper defines and proves a set of joint covariance properties for spatio-temporal receptive fields in terms of spatio-temporal derivative operators applied to spatio-temporally smoothed image data under compositions of spatial scaling transformations, spatial affine transformations, Galilean transformations and temporal scaling transformations. Specifically, the derived relations show how the parameters of the receptive fields need to be transformed, in order to match the output from spatio-temporal receptive fields under composed spatio-temporal image transformations. For this purpose, we also fundamentally extend the notion of scale-normalized derivatives to affine-normalized derivatives, that are computed based on spatial smoothing with affine Gaussian kernels, and analyze the covariance properties of the resulting affine-normalized derivatives for the affine group as well as for important subgroups thereof. We conclude with a geometric analysis, showing how the derived joint covariance properties make it possible to relate or match spatio-temporal receptive field responses, when observing, possibly moving, local surface patches from different views, under locally linearized perspective or projective transformations, as well as when observing different instances of spatio-temporal events, that may occur either faster or slower between different views of similar spatio-temporal events.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员