The Shift Equivalence Testing (SET) of polynomials is deciding whether two polynomials $p(x_1, \ldots, x_m)$ and $q(x_1, \ldots, x_m)$ satisfy the relation $p(x_1 + a_1, \ldots, x_m + a_m) = q(x_1, \ldots, x_m)$ for some $a_1, \ldots, a_m$ in the coefficient field. The SET problem is one of basic computational problems in computer algebra and algebraic complexity theory, which was reduced by Dvir, Oliveira and Shpilka in 2014 to the Polynomial Identity Testing (PIT) problem. This paper presents a general scheme for designing algorithms to solve the SET problem which includes Dvir-Oliveira-Shpilka's algorithm as a special case. With the algorithms for the SET problem over integers, we give complete solutions to two challenging problems in symbolic summation of multivariate rational functions, namely the rational summability problem and the existence problem of telescopers for multivariate rational functions. Our approach is based on the structure of isotropy groups of polynomials introduced by Sato in 1960s. Our results can be used to detect the applicability of the Wilf-Zeilberger method to multivariate rational functions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月15日
Arxiv
0+阅读 · 2023年10月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员