A methodology is developed to extract $d$ invariant features $W=f(X)$ that predict a response variable $Y$ without being confounded by variables $Z$ that may influence both $X$ and $Y$. The methodology's main ingredient is the penalization of any statistical dependence between $W$ and $Z$ conditioned on $Y$, replaced by the more readily implementable plain independence between $W$ and the random variable $Z_Y = T(Z,Y)$ that solves the [Monge] Optimal Transport Barycenter Problem for $Z\mid Y$. In the Gaussian case considered in this article, the two statements are equivalent. When the true confounders $Z$ are unknown, other measurable contextual variables $S$ can be used as surrogates, a replacement that involves no relaxation in the Gaussian case if the covariance matrix $Σ_{ZS}$ has full range. The resulting linear feature extractor adopts a closed form in terms of the first $d$ eigenvectors of a known matrix. The procedure extends with little change to more general, non-Gaussian / non-linear cases.
翻译:本文提出了一种方法,用于提取 $d$ 个不变特征 $W=f(X)$,这些特征能够预测响应变量 $Y$,同时不受可能同时影响 $X$ 和 $Y$ 的变量 $Z$ 的混淆。该方法的核心在于惩罚 $W$ 与 $Z$ 在给定 $Y$ 条件下的任何统计依赖性,并将其替换为更易于实现的 $W$ 与随机变量 $Z_Y = T(Z,Y)$ 之间的完全独立性,其中 $Z_Y$ 是 $Z\mid Y$ 的[Monge]最优传输重心问题的解。在本文考虑的高斯情形下,这两种表述是等价的。当真实的混淆变量 $Z$ 未知时,可以使用其他可测量的上下文变量 $S$ 作为替代;在高斯情形下,若协方差矩阵 $Σ_{ZS}$ 满秩,则此替换无需任何松弛。所得的线性特征提取器以已知矩阵的前 $d$ 个特征向量的闭式形式给出。该方法只需少量修改即可推广到更一般的非高斯/非线性情形。