The Quantum Alternating Operator Ansatz (QAOA) is a hybrid classical-quantum algorithm that aims to sample the optimal solution(s) of discrete combinatorial optimization problems. We present optimized QAOA circuit constructions for sampling MAX $k$-SAT problems, specifically for $k=3$ and $k=4$. The novel $4$-SAT QAOA circuit construction we present uses measurement based uncomputation, followed by classical feed forward conditional operations. The QAOA circuit parameters for $3$-SAT are optimized via exact classical (noise-free) simulation, using HPC resources to simulate up to $20$ rounds on $10$ qubits. In order to explore the limits of current NISQ devices we execute these optimized QAOA circuits for random $3$-SAT test instances with clause-to-variable ratio $4$ on four trapped ion quantum computers: Quantinuum H1-1 (20 qubits), IonQ Harmony (11 qubits), IonQ Aria 1 (25 qubits), and IonQ Forte (30 qubits). The QAOA circuits that are executed include $n=10$ up to $p=20$, and $n=22$ for $p=1$ and $p=2$. The high round circuits use upwards of 9,000 individual gate instructions, making these some of the largest QAOA circuits executed on NISQ devices. Our main finding is that current NISQ devices perform best at low round counts (i.e., $p = 1,\ldots, 5$) and then -- as expected due to noise -- gradually start returning satisfiability truth assignments that are no better than randomly picked solutions as the number of QAOA rounds are further increased.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员