This study addresses categories of harm surrounding Large Language Models (LLMs) in the field of artificial intelligence. It addresses five categories of harms addressed before, during, and after development of AI applications: pre-development, direct output, Misuse and Malicious Application, and downstream application. By underscoring the need to define risks of the current landscape to ensure accountability, transparency and navigating bias when adapting LLMs for practical applications. It proposes mitigation strategies and future directions for specific domains and a dynamic auditing system guiding responsible development and integration of LLMs in a standardized proposal.


翻译:本研究针对人工智能领域大语言模型(LLMs)相关的危害类别进行了系统分析。研究涵盖了人工智能应用开发前、开发中及开发后五个类别的危害:开发前阶段、直接输出危害、误用与恶意应用、以及下游应用风险。通过强调在将LLMs应用于实际场景时,需明确当前环境中的风险以确保问责制、透明性并规避偏见,本文提出了针对特定领域的缓解策略与未来研究方向,并构建了一个动态审计体系,以标准化方案指导LLMs的负责任开发与集成。

0
下载
关闭预览

相关内容

144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
46+阅读 · 11月21日
边缘大型语言模型综述:设计、执行与应用
专知会员服务
41+阅读 · 2024年10月21日
《大型语言模型归因》综述
专知会员服务
75+阅读 · 2023年11月8日
【2022新书】Python数学逻辑,285页pdf
专知
13+阅读 · 2022年11月24日
层级强化学习概念简介
CreateAMind
19+阅读 · 2019年6月9日
PointNet系列论文解读
人工智能前沿讲习班
17+阅读 · 2019年5月3日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
VIP会员
相关资讯
【2022新书】Python数学逻辑,285页pdf
专知
13+阅读 · 2022年11月24日
层级强化学习概念简介
CreateAMind
19+阅读 · 2019年6月9日
PointNet系列论文解读
人工智能前沿讲习班
17+阅读 · 2019年5月3日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员