Large Language Models (LLMs) have rapidly evolved from text-based systems to multimodal platforms, significantly impacting various sectors including healthcare. This comprehensive review explores the progression of LLMs to Multimodal Large Language Models (MLLMs) and their growing influence in medical practice. We examine the current landscape of MLLMs in healthcare, analyzing their applications across clinical decision support, medical imaging, patient engagement, and research. The review highlights the unique capabilities of MLLMs in integrating diverse data types, such as text, images, and audio, to provide more comprehensive insights into patient health. We also address the challenges facing MLLM implementation, including data limitations, technical hurdles, and ethical considerations. By identifying key research gaps, this paper aims to guide future investigations in areas such as dataset development, modality alignment methods, and the establishment of ethical guidelines. As MLLMs continue to shape the future of healthcare, understanding their potential and limitations is crucial for their responsible and effective integration into medical practice.


翻译:大语言模型已从基于文本的系统迅速发展为多模态平台,显著影响了包括医疗保健在内的多个领域。本文全面综述了大语言模型向多模态大语言模型的演进过程及其在医疗实践中日益增长的影响力。我们审视了MLLMs在医疗领域的现状,分析了其在临床决策支持、医学影像、患者参与及科研等方面的应用。该综述强调了MLLMs在整合文本、图像、音频等多元数据类型以提供更全面患者健康洞察方面的独特能力。同时,我们探讨了MLLM实施面临的挑战,包括数据局限性、技术障碍及伦理考量。通过识别关键研究空白,本文旨在为未来研究方向提供指引,例如数据集开发、模态对齐方法及伦理准则建立等领域。随着MLLMs持续塑造医疗健康的未来,理解其潜力与局限对于实现其在医疗实践中负责任且有效的整合至关重要。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员