Comparing directed acyclic graphs is essential in various fields such as healthcare, social media, finance, biology, and marketing. DAGs often result from contagion processes over networks, including information spreading, retweet activity, disease transmission, financial crisis propagation, malware spread, and gene mutations. For instance, in disease spreading, an infected patient can transmit the disease to contacts, making it crucial to analyze and predict scenarios. Similarly, in finance, understanding the effects of saving or not saving specific banks during a crisis is vital. Experts often need to identify small differences between DAGs, such as changes in a few nodes or edges. Even the presence or absence of a single edge can be significant. Visualization plays a crucial role in facilitating these comparisons. However, standard hierarchical layout algorithms struggle to visualize subtle changes effectively. The typical hierarchical layout, with the root on top, is preferred due to its performance in comparison to other layouts. Nevertheless, these standard algorithms prioritize single-graph aesthetics over comparison suitability, making it challenging for users to spot changes. To address this issue, we propose a layout that enhances shape changes in DAGs while minimizing the impact on aesthetics. Our approach involves outwardly swapping changes, altering the DAG's shape. We introduce new drawing criteria. Our layout builds upon a Sugiyama-like hierarchical layout and implements these criteria through two extensions. We designed it this way to maintain interchangeability and accommodate future optimizations, such as pseudo-nodes for edge crossing minimization. In our evaluations, our layout achieves excellent results, with edge crossing aesthetics averaging around 0.8 (on a scale of 0 to 1). Additionally, our layout outperforms the base implementation by an average of 60-75\%.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2022年12月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员