Recent progress in artificial intelligence (AI) has been driven by insights from physics and neuroscience, particularly through the development of artificial neural networks (ANNs) capable of complex cognitive tasks such as vision and language processing. Despite these advances, they struggle with continual learning, adaptable knowledge transfer, robustness, and resource efficiency -- capabilities that biological systems handle seamlessly. Specifically, neuromorphic systems and artificial neural networks often overlook two key biophysical properties of neural circuits: neuronal diversity and cell-specific neuromodulation. These mechanisms, essential for regulating dynamic learning across brain scales, allow neuromodulators to introduce degeneracy in biological neural networks, ensuring stability and adaptability under changing conditions. In this article, we summarize recent bioinspired models, learning rules, and architectures, and propose a framework for augmenting ANNs, which has the potential to bridge the gap between neuroscience and AI through neurobiological first principles. Our proposed dual-framework approach leverages spiking neural networks to emulate diverse spiking behaviors and dendritic compartmental dynamics, thereby simulating the morphological and functional diversity of neuronal computations. Finally, we outline how integrating these biophysical principles into task-driven spiking neural networks and neuromorphic systems provides scalable solutions for continual learning, adaptability, robustness, and resource-efficiency. Additionally, this approach will not only provide insights into how emergent behaviors arise in neural networks but also catalyze the development of more efficient, reliable, and intelligent neuromorphic systems and robotic agents.


翻译:人工智能(AI)的最新进展受到物理学和神经科学的启发,特别是通过能够处理视觉和语言等复杂认知任务的人工神经网络(ANNs)的发展。尽管取得了这些进步,现有系统在持续学习、适应性知识迁移、鲁棒性和资源效率方面仍面临挑战——而这些能力在生物系统中得以无缝实现。具体而言,神经形态系统和人工神经网络往往忽视了神经回路的两项关键生物物理特性:神经元多样性和细胞特异性神经调控。这些机制对于调节跨脑尺度的动态学习至关重要,它们使神经调质能够在生物神经网络中引入简并性,从而确保在变化条件下的稳定性和适应性。本文总结了近期受生物启发的模型、学习规则和架构,并提出了一个增强人工神经网络的框架,该框架有望通过神经生物学第一性原理弥合神经科学与人工智能之间的鸿沟。我们提出的双框架方法利用脉冲神经网络来模拟多样化的脉冲发放行为和树突区室动力学,从而模拟神经元计算的形态与功能多样性。最后,我们概述了如何将这些生物物理原理整合到任务驱动的脉冲神经网络和神经形态系统中,为持续学习、适应性、鲁棒性和资源效率提供可扩展的解决方案。此外,这一方法不仅有助于理解神经网络中涌现行为的产生机制,还将推动开发更高效、可靠和智能的神经形态系统与机器人智能体。

0
下载
关闭预览

相关内容

具有动能的生命体。
大模型赋能的具身智能:决策与具身学习综述
专知会员服务
41+阅读 · 8月16日
多智能体协作机制:大语言模型综述
专知会员服务
77+阅读 · 1月14日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
VIP会员
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员