ML and HPC applications increasingly combine dense and sparse memory access computations to maximize storage efficiency. However, existing CPUs and GPUs struggle to flexibly handle these heterogeneous workloads with consistently high compute efficiency. We present Occamy, a 432-Core, 768-DP-GFLOP/s, dual-HBM2E, dual-chiplet RISC-V system with a latency-tolerant hierarchical interconnect and in-core streaming units (SUs) designed to accelerate dense and sparse FP8-to-FP64 ML and HPC workloads. We implement Occamy's compute chiplets in 12 nm FinFET, and its passive interposer, Hedwig, in a 65 nm node. On dense linear algebra (LA), Occamy achieves a competitive FPU utilization of 89%. On stencil codes, Occamy reaches an FPU utilization of 83% and a technology-node-normalized compute density of 11.1 DP-GFLOP/s/mm2,leading state-of-the-art (SoA) processors by 1.7x and 1.2x, respectively. On sparse-dense linear algebra (LA), it achieves 42% FPU utilization and a normalized compute density of 5.95 DP-GFLOP/s/mm2, surpassing the SoA by 5.2x and 11x, respectively. On, sparse-sparse LA, Occamy reaches a throughput of up to 187 GCOMP/s at 17.4 GCOMP/s/W and a compute density of 3.63 GCOMP/s/mm2. Finally, we reach up to 75% and 54% FPU utilization on and dense (LLM) and graph-sparse (GCN) ML inference workloads. Occamy's RTL is freely available under a permissive open-source license.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员