This paper presents the foundational elements of a distributed memory method for mesh generation that is designed to leverage concurrency offered by large-scale computing. To achieve this goal, meshing functionality is separated from performance aspects by utilizing a separate entity for each - a shared memory mesh generation code called CDT3D and PREMA for parallel runtime support. Although CDT3D is designed for scalability, lessons are presented regarding additional measures that were taken to enable the code's integration into the distributed memory method as a black box. In the presented method, an initial mesh is data decomposed and subdomains are distributed amongst the nodes of a high-performance computing (HPC) cluster. Meshing operations within CDT3D utilize a speculative execution model, enabling the strict adaptation of subdomains' interior elements. Interface elements undergo several iterations of shifting so that they are adapted when their data dependencies are resolved. PREMA aids in this endeavor by providing asynchronous message passing between encapsulations of data, work load balancing, and migration capabilities all within a globally addressable namespace. PREMA also assists in establishing data dependencies between subdomains, thus enabling "neighborhoods" of subdomains to work independently of each other in performing interface shifts and adaptation. Preliminary results show that the presented method is able to produce meshes of comparable quality to those generated by the original shared memory CDT3D code. Given the costly overhead of collective communication seen by existing state-of-the-art software, relative communication performance of the presented distributed memory method also shows that its emphasis on avoiding global synchronization presents a potentially viable solution in achieving scalability when targeting large configurations of cores.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
24+阅读 · 2017年3月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
11+阅读 · 2019年4月15日
Arxiv
24+阅读 · 2017年3月9日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员