Building custom data analysis platforms traditionally requires extensive software engineering expertise, limiting accessibility for many researchers. Here, I demonstrate that modern large language models (LLMs) and autonomous coding agents can dramatically lower this barrier through a process called 'vibe coding', an iterative, conversational style of software creation where users describe goals in natural language and AI agents generate, test, and refine executable code in real-time. As a proof of concept, I used Vibe coding to create a fully functional proteomics data analysis website capable of performing standard tasks, including data normalization, differential expression testing, and volcano plot visualization. The entire application, including user interface, backend logic, and data upload pipeline, was developed in less than ten minutes using only four natural-language prompts, without any manual coding, at a cost of under $2. Previous works in this area typically require tens of thousands of dollars in research effort from highly trained programmers. I detail the step-by-step generation process and evaluate the resulting code's functionality. This demonstration highlights how vibe coding enables domain experts to rapidly prototype sophisticated analytical tools, transforming the pace and accessibility of computational biology software development.


翻译:构建定制化数据分析平台传统上需要广泛的软件工程专业知识,这限制了许多研究人员的可及性。本文证明,现代大语言模型(LLMs)和自主编码代理能够通过一种称为“vibe coding”的过程显著降低这一门槛。这是一种迭代式、对话式的软件创建方式:用户用自然语言描述目标,AI代理则实时生成、测试并优化可执行代码。作为概念验证,我使用Vibe编码创建了一个功能完整的蛋白质组学数据分析网站,能够执行包括数据标准化、差异表达检验和火山图可视化在内的标准任务。整个应用程序——包括用户界面、后端逻辑和数据上传流程——仅通过四条自然语言提示在十分钟内开发完成,无需任何手动编码,成本低于2美元。该领域以往的研究通常需要由训练有素的程序员投入数万美元的研究努力。我详细阐述了逐步生成过程并评估了生成代码的功能性。本研究表明,vibe coding如何使领域专家能够快速构建复杂分析工具的原型,从而改变计算生物学软件开发的速度和可及性。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员