We study the edges dissolution approximation (EDA) of Carnegie et al. We begin by repeating an observation from Carnegie et al., namely that in the dyad-independent case, the exact result is tractable. We then observe that taking the sparse limit of the exact result leads to a different approximation than that in Carnegie et al. We prove that this new approximation is better than the old approximation for sparse dyad-independent models, and we show via simulation that the new approximation tends to perform better than the old approximation for sparse models with sufficiently weak dyad-dependence. We then turn to general dyad-dependent models, proving that both the old and new approximations are asymptotically exact as the time step size goes to zero, for arbitrary dyad-dependent terms and some dyad-dependent constraints. In demonstrating this result, we identify a Markov chain, defined for any sufficiently small time step, whose cross-sectional and durational behavior is exactly that we desire of the EDA. This Markov chain can be simulated, and we do so for a dyad-dependent model, showing that it eliminates the biases present with either of the dyad-independent-derived approximations.


翻译:我们首先研究卡内基等人的边缘解体近似值(EDA),我们从重复卡内基等人的观察开始,即,在Dyad-独立案例中,确切结果是可以移动的。然后我们发现,如果精确结果的稀少限制导致与卡内基等人的近近似值不同。我们证明,这种新的近似值比稀少的Dyad-独立模型的旧近近似值好,我们通过模拟表明,新近近似的功效好于足够弱的低迷模型的旧近似值。我们然后转向一般的Dyad-独立模型,证明旧近似和新近似都是随着时间步速度到零而一样精确的,因为武断的依赖性术语和一些不完全依赖性的限制。我们通过展示这一结果,我们确定了一个Markov链,其定义足够小的时间,其交叉和持续的行为正是我们所希望的。这个Markov链可以模拟,而我们这样做是为了一个依赖DA。我们这样做是为了模拟一个不可靠的模型,表明,随着时间步步步步步的步步步步步步步的路径的走直,显示它消除了目前。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月8日
Arxiv
0+阅读 · 2022年2月6日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员