The prevailing issue of factual inconsistency errors in conventional Retrieval Augmented Generation (RAG) motivates the study of Factual Consistency Evaluation (FCE). Despite the various FCE methods proposed earlier, these methods are evaluated on datasets generated by specific Large Language Models (LLMs). Without a comprehensive benchmark, it remains unexplored how these FCE methods perform on other LLMs with different error distributions or even unseen error types, as these methods may fail to detect the error types generated by other LLMs. To fill this gap, in this paper, we propose the first comprehensive FCE benchmark \emph{Face4RAG} for RAG independent of the underlying LLM. Our benchmark consists of a synthetic dataset built upon a carefully designed typology for factuality inconsistency error and a real-world dataset constructed from six commonly used LLMs, enabling evaluation of FCE methods on specific error types or real-world error distributions. On the proposed benchmark, we discover the failure of existing FCE methods to detect the logical fallacy, which refers to a mismatch of logic structures between the answer and the retrieved reference. To fix this issue, we further propose a new method called \emph{L-Face4RAG} with two novel designs of logic-preserving answer decomposition and fact-logic FCE. Extensive experiments show L-Face4RAG substantially outperforms previous methods for factual inconsistency detection on a wide range of tasks, notably beyond the RAG task from which it is originally motivated. Both the benchmark and our proposed method are publicly available.\footnote{\url{https://huggingface.co/datasets/yq27/Face4RAG}\label{link_face4rag}}


翻译:暂无翻译

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员