As we approach the physical limits predicted by Moore's law, a variety of specialized hardware is emerging to tackle specialized tasks in different domains. Within combinatorial optimization, adiabatic quantum computers, CMOS annealers, and optical parametric oscillators are few of the emerging specialized hardware technology aimed at solving optimization problems. In terms of mathematical framework, the Ising optimization model unifies all of these emerging special-purpose hardware. In other words, they are all designed to solve optimization problems expressed in the Ising model or equivalently as a quadratic unconstrained binary optimization model. Due to variety of constraints specific to each type of hardware, they usually suffer from a major challenge: the number of variables that the hardware can manage to solve is very limited. Given that large-scale practical problems, including problems in operations research, combinatorial scientific computing, data science and network science require significantly more variables to model than these devices provide, we are likely to witness that cloud-based deployments of these devices will be available for parallel and shared access. Thus hybrid techniques in combination with both hardware and software must be developed to utilize these technologies. Local search meta-heuristics is one of the approaches to tackle large scale problems. However, a general optimization step within local search is not traditionally formulated in the Ising form. In this work, we propose a new meta-heuristic to model local search in the Ising form for the special-purpose hardware devices. As such, we demonstrate that our method takes the limitations of the Ising model and current hardware into account, utilizes a given hardware more efficiently compared to previous approaches, while also producing high quality solutions compared to other well-known meta-heuristics.


翻译:随着我们接近摩尔法律所预测的物理极限,各种专门硬件正在出现,以在不同领域完成专门任务。在组合优化、异端量子计算机、 CMOS annealers 和光学分光振荡器等新兴专门硬件技术中,旨在解决优化问题的新兴专门硬件技术很少。在数学框架方面,Ising优化模型将所有这些新出现的特殊用途硬件统一起来。换句话说,它们都旨在解决在Ising模型中表达的优化问题,或相当于一种四级、不受限制的二进制优化模型。由于每种硬件的具体制约,它们通常面临重大挑战:硬件能够解决的变量数量非常有限。鉴于大规模的实际问题,包括操作研究、组合科学计算、数据科学和网络科学方面的问题,需要比这些设备提供的模型多得多的变量。我们很可能看到,这些装置的云基部署将被用于平行和共享的当前限制。因此,与硬件和软件相结合的混合技术必须结合,才能很好地利用这些技术,因此,在质量上,硬件的变量的变量数量是非常有限的变量规模上,而在常规搜索中,这是一种常规搜索中,我们用来研究的一种方法, 一种是用来处理。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月19日
Arxiv
0+阅读 · 2021年1月18日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Inferred successor maps for better transfer learning
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员