The machine learning approach is vital in Internet of Things (IoT) malware traffic detection due to its ability to keep pace with the ever-evolving nature of malware. Machine learning algorithms can quickly and accurately analyze the vast amount of data produced by IoT devices, allowing for the real-time identification of malicious network traffic. The system can handle the exponential growth of IoT devices thanks to the usage of distributed systems like Apache Kafka and Apache Spark, and Intel's oneAPI software stack accelerates model inference speed, making it a useful tool for real-time malware traffic detection. These technologies work together to create a system that can give scalable performance and high accuracy, making it a crucial tool for defending against cyber threats in smart communities and medical institutions.
翻译:对于物联网(IoT)恶意软件流量检测,机器学习(Machine Learning)方法至关重要,因为它能够跟上恶意软件不断发展的特性。机器学习算法可以快速而准确地分析物联网设备产生的大量数据,从而实时识别恶意网络流量。该系统可以通过使用 Apache Kafka 和 Apache Spark 等分布式系统来处理物联网设备的指数增长,并且英特尔的 oneAPI 软件栈可以加速模型推断速度,使其成为一个有用的实时恶意软件流量检测工具。这些技术共同创造了一个可以提供可扩展性和高准确性的系统,使其成为智能社区和医疗机构防御网络威胁的关键工具。