In this work, we propose a sparse transformer architecture that incorporates prior information about the underlying data distribution directly into the transformer structure of the neural network. The design of the model is motivated by a special optimal transport problem, namely the regularized Wasserstein proximal operator, which admits a closed-form solution and turns out to be a special representation of transformer architectures. Compared with classical flow-based models, the proposed approach improves the convexity properties of the optimization problem and promotes sparsity in the generated samples. Through both theoretical analysis and numerical experiments, including applications in generative modeling and Bayesian inverse problems, we demonstrate that the sparse transformer achieves higher accuracy and faster convergence to the target distribution than classical neural ODE-based methods.


翻译:本文提出了一种稀疏Transformer架构,它将关于底层数据分布的先验信息直接融入神经网络的Transformer结构中。该模型的设计灵感来源于一个特殊的最优传输问题,即正则化Wasserstein近端算子,该算子具有闭式解,并恰好构成Transformer架构的一种特殊表示。与经典的基于流的模型相比,所提方法优化了问题的凸性,并促进了生成样本的稀疏性。通过理论分析和数值实验(包括在生成建模和贝叶斯逆问题中的应用),我们证明该稀疏Transformer相比经典的基于神经ODE的方法,能够以更高的精度和更快的速度收敛到目标分布。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2021年6月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员