We analyze the orthogonal greedy algorithm when applied to dictionaries $\mathbb{D}$ whose convex hull has small entropy. We show that if the metric entropy of the convex hull of $\mathbb{D}$ decays at a rate of $O(n^{-\frac{1}{2}-\alpha})$ for $\alpha > 0$, then the orthogonal greedy algorithm converges at the same rate. This improves upon the well-known $O(n^{-\frac{1}{2}})$ convergence rate of the orthogonal greedy algorithm in many cases, most notably for dictionaries corresponding to shallow neural networks. Finally, we show that these improved rates are sharp under the given entropy decay assumptions.


翻译:我们分析在应用到词典 $\ mathbb{D} $ 时的正方贪婪算法。 我们显示,如果以美元( $\\\\\ frac{ 1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
6+阅读 · 2017年7月6日
Arxiv
0+阅读 · 2021年8月31日
Arxiv
0+阅读 · 2021年8月31日
VIP会员
相关资讯
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
6+阅读 · 2017年7月6日
相关论文
Top
微信扫码咨询专知VIP会员