We consider the solution of the general Sylvester equation $AX+XB=C$ in mixed precision. First, we investigate the use of GMRES-based iterative refinement (GMRES-IR) to solve the equation using implicitly its Kronecker product form: we propose an efficient scheme to use the Schur factors of the coefficient matrices as preconditioners, but we demonstrate that this approach is not suitable in the case of the Sylvester equation. By revisiting a stationary iteration for linear systems, we therefore derive a new iterative refinement scheme for the quasi-triangular Sylvester equation, and our rounding error analysis provides sufficient conditions for convergence and a bound on the attainable relative residual. We leverage this iterative scheme to solve the general Sylvester equation in mixed precision. The new algorithms compute the Schur decomposition of the matrix coefficients in low precision, use the low-precision Schur factors to obtain an approximate solution to the quasi-triangular equation, and iteratively refine it to obtain a working-precision solution to the quasi-triangular equation. However, being only orthonormal to low precision, the unitary Schur factors of $A$ and $B$ cannot be used to recover the solution to the original equation. We propose two effective approaches to address this issue: one is based on re-orthonormalization in the working precision, and the other on explicit inversion of the almost-unitary factors. We test these mixed-precision algorithms on various Sylvester and Lyapunov equations from the literature. Our numerical experiments show that, for both classes of equations, the new algorithms are at least as accurate as existing ones. Our cost analysis, on the other hand, suggests that they would typically be faster than mono-precision alternatives if implemented on hardware that natively supports low precision.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年3月7日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
57+阅读 · 2022年1月5日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
57+阅读 · 2022年1月5日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员