Spiking neural networks (SNNs) have garnered significant attention as a central paradigm in neuromorphic computing, owing to their energy efficiency and biological plausibility. However, training deep SNNs has critically depended on explicit normalization schemes, leading to a trade-off between performance and biological realism. To resolve this conflict, we propose a normalization-free learning framework that incorporates lateral inhibition inspired by cortical circuits. Our framework replaces the traditional feedforward SNN layer with a circuit of distinct excitatory (E) and inhibitory (I) neurons that captures the features of the canonical architecture of cortical E-I circuits. The circuit dynamically regulates neuronal activity through subtractive and divisive inhibition, which respectively control the activity and the gain of excitatory neurons. To enable and stabilize end-to-end training of the biologically constrained SNN, we propose two key techniques: E-I Init and E-I Prop. E-I Init is a dynamic parameter initialization scheme that balances excitatory and inhibitory inputs while performing gain control. E-I Prop decouples the backpropagation of the E-I circuits from the forward pass and regulates gradient flow. Experiments across multiple datasets and network architectures demonstrate that our framework enables stable training of deep normalization-free SNNs with biological realism and achieves competitive performance without resorting to explicit normalization schemes. Therefore, our work not only provides a solution to training deep SNNs but also serves as a computational platform for further exploring the functions of E-I interactions in large-scale cortical computation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员