Spectral graph neural networks are proposed to harness spectral information inherent in graph-structured data through the application of polynomial-defined graph filters, recently achieving notable success in graph-based web applications. Existing studies reveal that various polynomial choices greatly impact spectral GNN performance, underscoring the importance of polynomial selection. However, this selection process remains a critical and unresolved challenge. Although prior work suggests a connection between the approximation capabilities of polynomials and the efficacy of spectral GNNs, there is a lack of theoretical insights into this relationship, rendering polynomial selection a largely heuristic process. To address the issue, this paper examines polynomial selection from an error-sum of function slices perspective. Inspired by the conventional signal decomposition, we represent graph filters as a sum of disjoint function slices. Building on this, we then bridge the polynomial capability and spectral GNN efficacy by proving that the construction error of graph convolution layer is bounded by the sum of polynomial approximation errors on function slices. This result leads us to develop an advanced filter based on trigonometric polynomials, a widely adopted option for approximating narrow signal slices. The proposed filter remains provable parameter efficiency, with a novel Taylor-based parameter decomposition that achieves streamlined, effective implementation. With this foundation, we propose TFGNN, a scalable spectral GNN operating in a decoupled paradigm. We validate the efficacy of TFGNN via benchmark node classification tasks, along with an example graph anomaly detection application to show its practical utility.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员