This paper studies $k$-claw-free graphs, exploring the connection between an extremal combinatorics question and the power of a convex program in approximating the maximum-weight independent set in this graph class. For the extremal question, we consider the notion, that we call \textit{conditional $\chi$-boundedness} of a graph: Given a graph $G$ that is assumed to contain an independent set of a certain (constant) size, we are interested in upper bounding the chromatic number in terms of the clique number of $G$. This question, besides being interesting on its own, has algorithmic implications (which have been relatively neglected in the literature) on the performance of SDP relaxations in estimating the value of maximum-weight independent set. For $k=3$, Chudnovsky and Seymour (JCTB 2010) prove that any $3$-claw-free graph $G$ with an independent set of size three must satisfy $\chi(G) \leq 2 \omega(G)$. Their result implies a factor $2$-estimation algorithm for the maximum weight independent set via an SDP relaxation (providing the first non-trivial result for maximum-weight independent set in such graphs via a convex relaxation). An obvious open question is whether a similar conditional $\chi$-boundedness phenomenon holds for any $k$-claw-free graph. Our main result answers this question negatively. We further present some evidence that our construction could be useful in studying more broadly the power of convex relaxations in the context of approximating maximum weight independent set in $k$-claw free graphs. In particular, we prove a lower bound on families of convex programs that are stronger than known convex relaxations used algorithmically in this context.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员