For a connected graph $G = (V, E)$ and $s, t \in V$, a non-separating $s$-$t$ path is a path $P$ between $s$ and $t$ such that the set of vertices of $P$ does not separate $G$, that is, $G - V(P)$ is connected. An $s$-$t$ path is non-disconnecting if $G - E(P)$ is connected. The problems of finding shortest non-separating and non-disconnecting paths are both known to be NP-hard. In this paper, we consider the problems from the viewpoint of parameterized complexity. We show that the problem of finding a non-separating $s$-$t$ path of length at most $k$ is W[1]-hard parameterized by $k$, while the non-disconnecting counterpart is fixed-parameter tractable parameterized by $k$. We also consider the shortest non-separating path problem on several classes of graphs and show that this problem is NP-hard even on bipartite graphs, split graphs, and planar graphs. As for positive results, the shortest non-separating path problem is fixed-parameter tractable parameterized by $k$ on planar graphs and polynomial-time solvable on chordal graphs if $k$ is the shortest path distance between $s$ and $t$.


翻译:对于连接的图形 $G = (V, E) 美元 和 美元 = (V, E) 美元 和 美元 = (t) V美元, 一个不分离的美元路径是一条路径 $P 美元和 美元之间的路径。 在本文中,我们从参数化复杂度的角度来考虑问题,这样一套美元顶点并不分离美元,也就是说,美元 - V(P) 美元是连接的。如果连接了$G - E(P) 美元,那么一条美元路径就不存在断开。找到最短的非分离和非分离路径的问题众所周知是硬的。在本文件中,我们从参数化的复杂度的角度来考虑问题。我们表明,找到非分离的美元路径,即美元,美元,即美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,一个不连接的对等点的参数是固定的参数。我们还认为,在数个图表类中最短的非分离路径,美元,如果平面的平面的平面的平面的平面的平面是正的平面的平面的平面, 。

0
下载
关闭预览

相关内容

专知会员服务
86+阅读 · 2020年12月5日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员