Feature matching is a crucial technique in computer vision. Essentially, it can be considered as a searching problem to establish correspondences between images. The key challenge in this task lies in the lack of a well-defined search space, leading to inaccurate point matching of current methods. In pursuit of a reasonable matching search space, this paper introduces a hierarchical feature matching framework: Area to Point Matching (A2PM), to first find semantic area matches between images, and then perform point matching on area matches, thus setting the search space as the area matches with salient features to achieve high matching precision. This proper search space of A2PM framework also alleviates the accuracy limitation in state-of-the-art Transformer-based matching methods. To realize this framework, we further propose Semantic and Geometry Area Matching (SGAM) method, which utilizes semantic prior and geometry consistency to establish accurate area matches between images. By integrating SGAM with off-the-shelf Transformer-based matchers, our feature matching methods, adopting the A2PM framework, achieve encouraging precision improvements in massive point matching and pose estimation experiments for present arts.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
24+阅读 · 2021年3月4日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员