Quality Assurance (QA) aims to prevent mistakes and defects in manufactured products and avoid problems when delivering products or services to customers. QA for AI systems, however, poses particular challenges, given their data-driven and non-deterministic nature as well as more complex architectures and algorithms. While there is growing empirical evidence about practices of machine learning in industrial contexts, little is known about the challenges and best practices of quality assurance for AI systems (QA4AI). In this paper, we report on a mixed-method study of QA4AI in industry practice from various countries and companies. Through interviews with fifteen industry practitioners and a validation survey with 50 practitioner responses, we studied the concerns as well as challenges and best practices in ensuring the QA4AI properties reported in the literature, such as correctness, fairness, interpretability and others. Our findings suggest correctness as the most important property, followed by model relevance, efficiency and deployability. In contrast, transferability (applying knowledge learned in one task to another task), security and fairness are not paid much attention by practitioners compared to other properties. Challenges and solutions are identified for each QA4AI property. For example, interviewees highlighted the trade-off challenge among latency, cost and accuracy for efficiency (latency and cost are parts of efficiency concern). Solutions like model compression are proposed. We identified 21 QA4AI practices across each stage of AI development, with 10 practices being well recognized and another 8 practices being marginally agreed by the survey practitioners.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员